A MONOCLONAL ANTI-IgE ANTIBODY AGAINST AN EPITOPE (AMINO ACIDS 367–376) IN THE CH3 DOMAIN INHIBITS IgE BINDING TO THE LOW AFFINITY IgE RECEPTOR (CD23)\(^1\)

ISABELLE CHRÉTIEN,\(^2\) BIRGIT A. HELM,\(^1\) PHILIP J. MARSH,\(^1\) EDUARDO A. PADLAN,\(^1\) JOHN WIJDENES,\(^*\) AND JACQUES BANCHÈREAU*\(^*\)

From the *UNICET, Laboratory for Immunological Research, 69572, Dardilly, France; \(^1\)Department of Biophysics, King's College, London WC 2; \(^2\)Laboratory of Molecular Biology, National Institute of Diabetes and Kidney Diseases, National Institutes of Health, Bethesda, MD 20205

We have produced three different mAb specific for human IgE-Fc. Their binding pattern to either heat-denatured IgE or a family of overlapping IgE-derived recombinant peptides and their ability to affect interaction of IgE with its low affinity receptor FcεR2/CD23 demonstrate that they recognize distinct epitopes on the IgE molecule. All three mAb were able to induce basophil degranulation as measured by the induction of histamine release. mAb 173 recognizes a thermolabile epitope in the CH4 domain. It does not affect the binding of IgE to FcεR2/CD23. mAb 272 recognizes a thermolabile epitope that maps to a sequence of 36 amino acids (AA) spanning part of the CH2 and CH3 domain and it does not affect the binding of IgE to FcεR2/CD23. mAb 27 recognizes a thermolabile epitope located on a 10 AA stretch (AA 367–376) in the CH3 domain. This area contains one N-linked oligosaccharide (Asn-371), but the antibody is not directed against carbohydrate because it binds to Escherichia coli-derived IgE peptides. mAb 27 inhibits the binding of IgE to FcεR2/CD23 but is still capable of reacting with IgE already bound to FcεR2/CD23. These data suggest that upon binding to FcεR2/CD23, the IgE molecule engages one of two equivalent-binding sites close to the glycosylated area of the CH3 domain.

Cell surface receptors for the Fc fragments of IgE (FcεR) have been identified on a variety of cell types from hematopoietic origin. A low affinity type of receptor has been identified on T and B lymphocytes, monocytes, platelets, and eosinophils (1, 2). It has been recently demonstrated that the low affinity receptor for IgE on B cells is identical to the CD23 Ag earlier described as a B cell-activation marker (3–5). In rodents, lymphocytes bearing low affinity receptors for IgE and their soluble products, collectively called IgE-binding factors, have been shown to play a major role in the regulation of IgE production (6, 7).

Recently, IL-4 (8, 9) has been shown to induce enriched B cells preparations to produce IgE (10, 11), possibly through the induction of FcεR2/CD23 or the release of a soluble form of FcεR2/CD23 (12, 13). Basophils and mast cells express FcεR1, which bind IgE with high affinity, and the reaction of allergen with cell-bound IgE induces the release of a variety of pharmacologically active mediators that are responsible for the clinical manifestations of allergic disorders (14, 15). The region of the IgE molecule that interacts with the high affinity IgE receptor (FcεR1) on basophil/mast cells has been recently mapped to span the junction between the CH2 and CH3 domains (residues 301–376) using the capacity of IgE fragments to inhibit passive cutaneous anaphylaxis (16–18). In contrast, the region of the IgE molecule that interacts with the FcεR2/CD23 on B cells has not yet been identified.

In this study, we report the characterization of three mAb specific for human IgE. One of these antibodies, mAb 27, is specific for an AA epitope in the CH3 domain of IgE (residues 367–376) and inhibits the binding of IgE to FcεR2/CD23, suggesting that a site close to or involving this epitope interacts with FcεR2/CD23.

MATERIALS AND METHODS

Generation of anti-human IgE mAb. BALB/c mice were immunized i.p. with 50 μg of IgE PS (a kind gift from Dr. Ishizaka) preincubated one night at 4°C with 5 μl of anti-human IgG mouse serum in CFA (GIBCO, Grand Island, NY). Two weeks later, the same preparation was injected s.c. in incomplete Freund's adjuvant. One month after the last boost, and for 3 consecutive days the mice received i.v. 50 μg of IgE PS in PBS. The following day, one mouse was bled and its spleen was removed for the fusion. Spleen cells were fused with NS1 mouse myeloma cells (ration 5/1) in polyethylene glycol 4000. After the fusion, cells were incubated for one night at 37°C in RPMI 1640 medium supplemented with 10% heat-inactivated FCS, 2 mM glutamine, 100 U/ml penicillin, 2 mM streptomycin, and 5 μg/ml insulin (all from Flow laboratories, Irvine, Scotland). The next day, cells were resuspended in RPMI 1640 complete medium containing 0.1 mM hypoxanthine, 6 × 10⁻⁵ M aminopterin, and 10⁻⁴ M thiamine. Two weeks later, hybridoma supernatants were harvested and tested for their ability to bind IgE in a sandwich ELISA. As control, all supernatants were tested in the same manner for their cross-reaction on human IgE. Hybrids positive on IgE alone were cloned and expanded for supernatant production or for ascitic fluid production.

Preparation of IgE-derived peptides. The cloning and expression of gene fragments coding for the CH2-4 region of IgE (19) and smaller IgE-derived gene fragments have been described in detail previously.

\(^1\)Part of this work was supported by grants from the Medical Research Council and the Research Corporation, Ltd. (U.K.).

\(^2\)Address correspondence and reprint requests to: Isabelle Chrétien, UNICET, 27 chemin des Peupliers, BP 11, 69572, Dardilly, France. Isabelle Chrétien is supported by the Fondation Mérieux (Lyon, France).

\(^3\)Abbreviations used in this paper: FcεR2/CD23, low affinity receptor for IgE on lymphocytes; AA, amino acid; FcεR1, high affinity receptor for IgE on basophils.
(18, 20). The recombinant t-chain polypeptides used in the present study were solubilized from cultures of Escherichia coli and partially purified by selective ammonium sulfate precipitation. Figure 4A shows the genetic constructs employed for antibody mapping: the numbers of amino acid residues correspond to the number of the domains they contain; primed numbers indicate a truncated domain.

Sandwich ELISA. Rabbit polyclonal antibodies anti-human IgE (Dakopatts, Glostrup, Denmark) or anti-human IgG (Behring, Marburg, Germany) were affinity-purified by selective ammonium sulfate precipitation. Figure 4A shows the genetic constructs employed for antibody mapping: the domains they contain. Primed numbers indicate a truncated domain.

Names of the recombinant e-peptides correspond to the names of the polyclonal antibodies (Dakopatts, Glostrup, Denmark) or anti-human IgG (Behring, Marburg, Germany). Tween (all washes were performed with this buffer), polyclonal human IgE, polyclonal human IgG, polyclonal human IgA (gift from Dr. Rigal, Blood Bank, Lyon, France) or medium were incubated for 2 h at room temperature. After washes, hybrid supernatants were added for 2 h at room temperature. The binding of the mAb was monitored by using an anti-mouse Ig conjugated to alkaline phosphatase (Sigma). Finally, enzyme substrate p-nitrophenylphosphate (Sigma) in 1 M diethanolamine buffer was added. Plates were incubated at 37°C and optical density was measured at 405 nm using a Dynatech MR 580 Autoreader.

Indirect ELISA. In this assay, human IgE, IgG, IgM, or IgA purified as described earlier (22) were directly coated at 200, 100, and 50 ng/well. The mAb and the conjugates were added as described above. Positive controls were mAb against IgE clone 8a4 (Immunotech, Lausanne, Switzerland) or IgG clone D145 (K. D. Dickenson, Mountain View, CA) and anti-IgA (Serotec, Oxford, England).

mAb purification: Fab fragment preparation. Isotype determination of the mAb was carried out using a Meloy radial immunodiffusion kit (Meloy, Springfield, VA). mAb were purified using protein A affinity chromatography (Bio-Rad, Richmond, CA) either from ammonium sulfate precipitates of hybridoma supernatants or from ascitic fluids. For the Fab preparation, purified mAb diluted in PBS containing 0.01 M cysteine and 2 mM EDTA, pH 7.2, was incubated for 1 h at 37°C with papain (24 U for 100 ng of Ig). The pH was then adjusted to 8.5 and after dialysis the mixture was passed over a protein A column. The Fab fragment was recovered in the effluent. Digestion and purity were checked on SDS-PAGE followed by silver staining (BioRad kit).

Immunoprecipitation. A total of 30 ng (about 100,000 cpm) of IgE was labeled by the chloramine T method and was incubated with 100 μl of hybrid supernatant for 30 min at room temperature. Precipitation was achieved by adding 10 μl of a rabbit anti-mouse Ig conjugated to 100 μl of protein A-Sepharose 4B (Sigma) at 4°C. After centrifugation, supernatants were harvested and protein A-Sepharose was washed twice with PBS containing 0.05% Tween. After two washes, binding of the mAb to IgE was detected by addition of 125I-labeled rabbit anti-mouse IgG (Radiochemical Centre, Amersham, UK). Radioactivity was developed by the method of Adams (25).

Competition experiment between anti-human IgE mAb. RIA tubes were coated overnight at 4°C with 400 μl of polyclonal anti-human λ-chain (Behring) dilution 1/2000 in carbonate-bicarbonate buffer. After saturation for 1 h at room temperature with PBS containing 1% BSA and three washes with PBS 0.05% Tween (all washes were performed with this buffer), 400 μl of IgE PS (12.5 ng/ml) were added and incubated for 2 h at room temperature. After three washes, 125I-labeled λ-chain T method was incubated with the chloramine T method and purified anti-IgE mAb alone or in the presence of unlabeled purified mAb (or 200 μl of clone supernatant) were added and incubated 2 h at room temperature. After three washes, radioactivity of the tubes was measured with a gamma counter.

**Fluorescence parameters were collected by using a 5-W argon laser running at 488 nm, 0.5 W. Fluorescence parameters were collected by using a built-in logarithmic amplifier after gating on the combination of forward and perpendicular light scatter, which was used to discriminate viable from nonviable cells.

Inhibition of IgE binding to RPMI 8866 cells. Several dilutions of mAb in 50 μl were incubated for 45 min at room temperature with 40 μl IgE PS (20 μg/ml). A total of 5 × 10^6 RPMI 8866 cells in 100 μl RPMI 8866 was then added for 30 min at 4°C. After two washes, the IgE anti-IgE complex binding was monitored by incubation with l) an affinity-purified rabbit anti-human IgE (prepared in the laboratory) followed by incubation with a goat anti-rabbit IgG coupled to fluorescent microspheres as described earlier (22) or ii) a fluorocinated rabbit anti-mouse Ig.

Degranulation of basophils and histamine assay. Histamine levels were measured by using a specific RIA (Immunotech). Basophil degranulation was performed on whole blood from normal donors. Fifty microliters of mAb dilution were added to 100 μl of blood previously diluted 1/4 with manufacturer's buffer and incubated 30 min at 37°C. After centrifugation, supernatants were harvested and histamine content was measured following manufacturer's instructions. Total histamine content was determined after dilution of blood in distilled water and freeze-drying.

RESULTS

Generation of mAb Specific for Human IgE

In order to generate mAb specific for human IgE, mice were immunized with purified IgE that had previously been preincubated with a mouse antiserum specific for human IgG. This procedure was used to mask epitopes common to IgG and IgE. Spleen cells were fused with NS-1 myeloma cells and the supernatants from the resulting hybridomas were tested for their ability to recognize IgE bound to microtiter plates via an adsorbed rabbit polyclonal antibody specific for IgE. In order to eliminate mAb that would recognize epitopes common to both IgE and IgG (e.g., anti-L-chain antibodies), supernatants were also tested for their ability to bind to IgG bound to microtiter plates via an adsorbed rabbit polyclonal antibody specific for IgG. According to these criteria, eight hybridomas specific for IgE were selected, cloned, and subcloned. mAb originating from these hybridomas were obtained in purified form from ascites or cell culture supernatants. They were able to bind to IgE but not to IgG, IgM, or IgA directly coated to microtiter plates (Table I). These mAb were able to immunoprecipitate soluble 125I IgE but not 125I IgG (not shown). In addition, these mAb could bind to IgE adsorbed on nitrocellulose filters. All mAb were found to recognize two different myelomatous IgE (PS and Lyon) and a polyclonal IgE preparation either in dot immunoassay or in ELISA (data not shown) showed.

![Table 1](https://example.com/table1.png)

TABLE 1

<table>
<thead>
<tr>
<th>Binding specificity of monoclonal anti-IgE antibodies (OD x 10^p)</th>
<th>IgG</th>
<th>IgA</th>
<th>IgM</th>
<th>IgE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti-FN-1 mAb</td>
<td>77</td>
<td>83</td>
<td>96</td>
<td>93</td>
</tr>
<tr>
<td>Anti-gG mAb</td>
<td>818</td>
<td>95</td>
<td>96</td>
<td>164</td>
</tr>
<tr>
<td>Anti-IgA mAb</td>
<td>128</td>
<td>271</td>
<td>88</td>
<td>98</td>
</tr>
<tr>
<td>Anti-IgM mAb</td>
<td>112</td>
<td>84</td>
<td>1500</td>
<td>100</td>
</tr>
<tr>
<td>mAb 27</td>
<td>102</td>
<td>115</td>
<td>>1500</td>
<td>>1500</td>
</tr>
<tr>
<td>mAb 272</td>
<td>166</td>
<td>157</td>
<td>144</td>
<td>>1500</td>
</tr>
<tr>
<td>mAb 173</td>
<td>166</td>
<td>141</td>
<td>130</td>
<td>>1500</td>
</tr>
</tbody>
</table>

* A total of 100 ng purified IgG, IgA, IgM, and IgE was coated into microtiter plates wells, 200 μl mAb anti-ig were added for 2 h. Then, alkaline phosphatase-conjugated anti-mouse Ig was added for 2 h. Paranitrophenylphosphate in diethanolamine buffer was added and OD were measured after 1 h at 405 nm. Each value expressed in thousands of OD is the mean of quadruplicates (SD < 5% of the mean).
ing that their reactivity was not limited to the IgE used as the immunogen. Competition studies (not shown here) performed with these eight mAb allowed us to demonstrate that they were specific for three distinct antigenic sites on the IgE molecules. mAb 173 was studied in detail as a representative of a group of six mAb whereas mAb 27 and mAb 272 were unique. These three mAbs were of the IgG1 isotype. As determined in an ELISA indirect assay mAb 272 could bind to heat-denatured IgE whereas mAb 27 and mAb 173 failed to do so (Fig. 1) suggesting that the latter were recognizing an epitope localized within the CH3 and CH4 domains.

Effects of the Anti-IgE mAb on the Interaction of IgE with Its High and Low Affinity Receptors

Induction of basophil degranulation. We have investigated whether the three anti-IgE mAbs were able to induce basophil degranulation and histamine release. Whole blood was incubated with increasing concentrations of anti-IgE mAb and the histamine released was measured with a RIA. Data in Table II show that the three tested mAbs were able to induce basophil histamine release, demonstrating that these antibodies bind to epitopes on the IgE molecule that are not masked when IgE is bound to the high affinity IgE receptor (see Discussion).

Effects of the anti-IgE mAb in the IgE-FcR2/CD23 interaction. The preceding experiment has shown that the three anti-IgE mAbs were able to bind to IgE occupied basophils. It was therefore investigated whether the purified anti-IgE mAb would bind to RPMI 8866 cells saturated with IgE, the binding being monitored by subsequent incubation with FITC-conjugated goat anti-mouse Ig F(ab')2 fragments. Figure 2 demonstrates that the three anti-IgE mAbs bind to IgE-saturated cells. Binding was shown to be specific since anti-IgE mAb did not bind to RPMI 8866 cells before incubation with IgE. These data indicate that sites on FcR2/CD23-complexed IgE continue to be available to anti-IgE mAb. Next, we investigated if preincubation of IgE with three anti-IgE mAbs could interfere with the binding of IgE to FcR2/CD23. As shown in Figure 3, mAb 173 (Fig. 3D) and mAb 272 (Fig. 3E) did not prevent binding of IgE as visualized by rabbit anti-IgE/fluorescent bead-conjugated anti-rabbit IgG. It could be demonstrated that bound IgE was actually an IgE/anti-IgE complex since cell staining could be observed with FITC-conjugated anti-mouse Ig (data not shown). In contrast, preincubation of IgE with mAb 27 totally abrogated the binding of IgE to FcR2/CD23 as monitored by rabbit anti-IgE/fluorescent bead-conjugated anti-rabbit IgG (Fig. 3B). Fab fragments of mAb 27 also inhibited the binding of IgE to FcR2/CD23, thus partially ruling out a steric hindrance effect (Fig. 3C).

Binding of Anti-IgE mAb to IgE-Derived Recombinant Peptides

In order to locate epitopes recognized by the three mAbs, purified IgE was digested either with papain, pepsin, or V8 protease. IgE peptides were obtained which were still recognized by the mAb in Western blot analysis (data not shown). This allowed us to exclude that the mAb recognized conformational epitopes and therefore allowed immunoblotting studies with E. coli-derived recombinant peptides encompassing different sequences of the IgE molecule spanning the whole Fc region. Figure 4 summarizes the expression products of cloned e-chain cDNA fragments used in the present study and the binding pattern of mAb 27, mAb 173, and mAb 272 to these products. The e-chain sequence common to all the recombinant peptides recognized by mAb 272 comprises residues 301 to 336, which are located at the junction between CH2 and CH3.

mAb 173, as well as five other members of this group binds to peptides R2-4, R2'-4, R3-4, and R4. It does not bind to R2. There is a weak cross-reactivity with R2'-3' and R2-3. Excluding this cross-reaction, this pattern indicates that mAb 173 (as well as five other members of this group) binds to an epitope in the CH4 domain (residues 440 to 547).

Of particular interest is mAb 27, which inhibits the binding of IgE to cells bearing the FcR2/CD23. mAb 27 binds to peptides R2-4, R2'-4', R2-3', R2'-3', R3-4 but not to peptides R2, R2, R2-3'A and R2-3'B (Fig. 5). The reactivity of this antibody shows that it is directed against a heat labile, nonglycosylated epitope in the N-terminal region of the CH3 domain (AA 367-376).

DISCUSSION

The aim of this work was to produce mAb specific for human IgE-Fc in order to map the sites on IgE interacting with receptors on target cells. Eight mAb specific for the e-chain were obtained. They were able to recognize soluble IgE as well as partially denatured IgE obtained after

![Figure 1](image-url)

Figure 1. Binding of anti-IgE mAb to IgE and heat-denatured IgE in a sandwich ELISA. Plates were coated with a polyclonal rabbit anti-IgE antibody. Increasing concentration of heat-denatured (2 h at 56°C) IgE (open symbol) or nontreated IgE (closed symbol) were added. The anti-IgE mAb to assay was then added, followed by an alkaline phosphatase-conjugated goat anti-mouse Ig. Finally substrate was added and OD determined at 405 nm. Each point is a mean of duplicate determination. Similar results were obtained in four other experiments.
AN EPITOPE ON IgE INTERACTING WITH FcR2/CD23

TABLE II

<table>
<thead>
<tr>
<th>mAb Concentration (ng/ml)</th>
<th>mAb Control</th>
<th>mAb 27</th>
<th>mAb 173</th>
<th>mAb 272</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>0.5</td>
<td>ND</td>
<td>60</td>
<td>24</td>
<td>17</td>
</tr>
<tr>
<td>4</td>
<td>ND</td>
<td>30</td>
<td>48</td>
<td>48</td>
</tr>
<tr>
<td>8</td>
<td>2.5</td>
<td>7.8</td>
<td>36</td>
<td>54</td>
</tr>
</tbody>
</table>

* A total of 100 µl (1/4 diluted) blood was incubated for 30 min with increasing concentrations of the mAbs. After centrifugation, histamine content of the supernatant was estimated by a specificRIA. The total histamine content released by addition of distilled water and freeze thawing was 250 nM. Each value is the mean of quadruplicates (SD <5% of the mean).

Figure 2. Fixation of anti-IgE mAb to IgE bound to FcR2/CD23 on RPMI 8866 cells. Cells were first incubated with IgE then with the different anti-IgE mAb or a control mAb of the same isotype. Binding of the mAb was monitored by FITC-conjugated F(ab')2 fragments of goat anti-mouse Ig. Samples were analyzed by flow cytometry. Histograms in dark, controls obtained by omission of IgE; abscissa, log fluorescence intensity; ordinate, relative number of cells. A, anti-IFNγ-mAb; B, mAb 27; C, mAb 173; D, mAb 272.

Figure 3. Fixation of IgE/anti-IgE mAb complexes to FcR2/CD23 on RPMI 8866 cells. IgE (1 µg) in 40 µl were incubated with 1 µg of anti-IgE mAb in 50 µl for 45 min at room temperature. Then 5 x 10⁶ RPMI 8866 cells in 100 µl were added. A rabbit anti-IgE antiserum was added followed by goat anti-rabbit Ig coupled to fluorescent microspheres. Samples were analyzed by flow cytometry. Histograms in dark, controls obtained by omission of IgE; abscissa, log fluorescence intensity; ordinate, relative number of cells; A, anti-IFNγ-mAb; B, mAb 27; C, Fab fragments of mAb 27; D, mAb 173; E, mAb 272.

It has been shown previously that an apparently monomeric recombinant peptide containing a sequence of 76 AA at the CH2/CH3 junction contains the FcR1-binding site on human IgE (18). The fact that our three mAb triggered IgE-occupied peripheral blood basophils does not mean that epitopes recognized by these mAbs are not involved in FcR1 binding but only that these sites are still available when IgE is bound to FcR1. In order to determine whether the IgE epitopes recognized by mAb 27 and mAb 272 are involved in binding to FcR1, it would be of interest to test whether these mAbs are able to induce degranulation of basophils sensitized with monomeric rE2-3 or rE2'-3'. Because a fraction of FcR1 sites on peripheral basophils used in the present study is already occupied by endogenous IgE these experiments will have to await the outcome of unsensitized target cells.

Examination of a structural model of the human IgE-Fc region (28, 29) shows that accessible residues in the last two β-strands of CH2 involve residues 307 to 314, and 324 to 335, whereas the first two β-strands in CH3 face away from solvent and, by homology with the known structure of human IgG-Fc, would be mainly covered with carbohydrate (28, 29). Thus, the third β-strand (AA 362−370) in CH3 may contribute residues for both low and high affinity recognition sites on IgE. The inhibition of IgE binding by mAb 27 to FcR2/CD23 suggests that an epitope involving AA 367−376 comprises, or is close to high affinity recognition sites on IgE. The inhibition of IgE to FcR2/CD23. This indicates that none of the IgE epitopes recognized by mAb 173 is masked when IgE is bound to FcR2 or FcR1.

mAb 272 was found to recognize an epitope within a stretch of 36 AA (AA 301−336) spanning the junction between the C-terminal CH2 domain and N-terminal CH3 domain, which is not affected by heat denaturation. mAb 272 induces degranulation of IgE-occupied basophils and is unable to prevent the binding of IgE to FcR2/CD23.

The third antibody, mAb 27, recognizes a heat-labile epitope involving a stretch of 10 AA (367−376) in the N-terminal CH3 domain. This antibody induces degranulation of IgE-sensitized basophils and inhibits the binding of IgE to FcR2/CD23. Furthermore, we found that when IgE is preincubated with RPMI 8866 cells, mAb 27 can still engage receptor-bound IgE.

Although Baniyash et al. have described anti-IgE mAb that bind to several conformational determinants of rat IgE (26, 27), our mapping studies exclude this possibility. The most plausible explanation for our observation would be that IgE binds to a single FcR2/CD23 molecule by involving epitopes from only one of the two e-chains, leaving the other epitopes localized on the second e-chain free to interact with the anti-IgE mAb.

It has been shown previously that an apparently monomeric recombinant peptide containing a sequence of 76 AA at the CH2/CH3 junction contains the FcR1-binding site on human IgE (18). The fact that our three mAbs triggered IgE-occupied peripheral blood basophils does not mean that epitopes recognized by these mAbs are not involved in FcR1 binding but only that these sites are still available when IgE is bound to FcR1. In order to determine whether the IgE epitopes recognized by mAb 27 and mAb 272 are involved in binding to FcR1, it would be of interest to test whether these mAbs are able to induce degranulation of basophils sensitized with monomeric eR2-3 or eR2'-3'. Because a fraction of FcR1 sites on peripheral basophils used in the present study is already occupied by endogenous IgE these experiments will have to await the outcome of unsensitized target cells.

Examination of a structural model of the human IgE-Fc region (28, 29) shows that accessible residues in the last two β-strands of CH2 involve residues 307 to 314, and 324 to 335, whereas the first two β-strands in CH3 face away from solvent and, by homology with the known structure of human IgG-Fc, would be mainly covered with carbohydrate (28, 29). Thus, the third β-strand (AA 362−370) in CH3 may contribute residues for both low and high affinity recognition sites on IgE. The inhibition of IgE binding by mAb 27 to FcR2/CD23 suggests that an epitope involving AA 367−376 comprises, or is close to the binding site of IgE to FcR2/CD23 and the model predicts that an epitope involving Pro-367, Ser-368, and Lys-369 has antigenic potential.

However, we and others, (D. Vercelli, B. Helm, manu-
AN EPITOPE ON IgE INTERACTING WITH FcεR2/CD23

A

<table>
<thead>
<tr>
<th>L</th>
<th>H</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>V</th>
<th>CH1</th>
<th>CH2</th>
<th>CH3</th>
<th>CH4</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
</tbody>
</table>

33 32 AN EPITOPE ON IgE INTERACTING WITH FcεR2/CD23

Figure 4. Reactivity of anti-IgE mAb with rIgE-derived peptides. A, genetic constructs used in mapping of the human α-chain by anti-IgE mAb: B, binding pattern of mAb as analyzed by immunoblotting (see Materials and Methods): +, strong binding; ±, weak binding; −, no binding. N.A., not applicable.

Figure 5. Immunoblots of the anti-IgE mAb 27 with IgE-derived peptides. Peptides were run on 15% acrylamide SDS gels. Upper panel, gels were stained with Coomassie blue; lower panel, duplicate gels were transferred onto nitrocellulose then reacted with mAb 27 followed by anti-mouse IgG coupled to peroxidase (see Materials and Methods). 1, Prestained standards (Bethesda Research Laboratories, Bethesda, MD). From top to bottom, arrows show Mr in kDa 68, 43, 25.7, 18.4, 14.3; 2, IgE (ND); 3, rE2-4; 4, rE2; 5, rE2-4'; 6, rE2-3'; 7, rE2-3; 8, rE3-4; 9, rE4; 10, rE2-3'; 11, rE2-3'A and rE2-3'B.
An attractive hypothesis presents itself when we consider possible sites on IgE involved in FcR2/CD23 binding in the context of a 3D model structure of human IgE-Fc (Fig. 6). An inspection of this model clearly demonstrates the close proximity of one of the β-strands in CH2 (AA 307–314) recognized by mAb P3 to the area defined by mAb 27 on IgE (AA 367–376) thus suggesting that IgE makes contact with its low affinity receptor in this region.

It is worth noting that although both mAb 272 and mAb P3 recognize an epitope in the C-terminal CH2 domain, they obviously bind to different determinants, because mAb 272 does not inhibit the binding of IgE to FcR2/CD23. It indicates that the sequence comprising AA 301–336 possesses at least two antigenic determinants and that the epitope defined by mAb P3, but not by mAb 272 is sufficiently close to or involves the site on IgE interacting with FcR2/CD23. Indeed, the 3D model structure shows that the putative epitope for mAb P3 (AA 307–314) is remote from the second site (AA 324–336) computed to contain antigenic determinants. It is tempting to speculate that an epitope in this sequence might be recognized by mAb 272, although this remains to be demonstrated.

Although the sequence defined by mAb 27 carries one of the two oligosaccharide moieties (linked to Asn-371) in CH3, the antibody is not directed against carbohydrate. In view of the fact that FcR2/CD23 shares considerable homology with the asialoglycoprotein receptor (30–32) and that the carbohydrate moieties of IgE-binding factors seem to play an important role in the regulation of IgE synthesis (6, 7, 33, 34), one might invoke a role of carbohydrate in the interaction of IgE with its low affinity receptor. Whether such an interaction of IgE with FcR2/CD23 plays a role in the regulation of IgE production still remains to be established.

In conclusion, our anti-IgE mAb allowed us to establish that occupation of epitopes on IgE involving AA 307–314 or 367–376 by Fab fragments of mAb P3 or mAb 27 will inhibit the binding to FcR2/CD23. These observations are entirely consistent when considered in the context of current structural models (28, 29) for IgE-Fc, which show...
the close proximity of these epitopes in the cleft made up by residues of the C-terminal CH2 and N-terminal CH3 domain that also comprise the sites where IgE engages FcR1. In addition, the data suggest that only epitopes carried by one of the two epsilon chains are involved in the interaction of IgE with FcR2/CD23.

Acknowledgments. The authors wish to thank Dr. Jean-Yves Bonnefoy for stimulating discussions, Jean-Pierre Aubry for expert flow cytometry assistance, Dr. D. Rigal for his help with the basophil degranulation assays, Dr. H. Gould for her support, and Nicole Courbiere for expert editorial assistance.

REFERENCES